Search results for "quantum [statistics]"

showing 10 items of 4295 documents

Thermochemical properties of small open-shell systems: experimental and high-levelab initioresults for NH2and

2006

The first adiabatic ionization energy and the first singlet–triplet splitting of the amidogen radical (NH2) have been determined by high-level ab initio quantum chemistry based on the coupled-cluster approach (90 041 and 10 319 cm−1, respectively) and by high-resolution pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy (90 083.8 ± 1.0 and 10 222.0 ± 1.3 cm−1, respectively). A comparison between the theoretical and experimental values demonstrates the predictive powers of high-level ab initio theory in the derivation of the thermochemical properties of small molecular systems. The absolute accuracy of better than 100 cm−1 alleviates the experimental search for…

AmidogenAbsolute accuracyBiophysicsAb initioCondensed Matter PhysicsQuantum chemistryMolecular physicschemistry.chemical_compoundX-ray photoelectron spectroscopychemistryPhysical and Theoretical ChemistryIonization energyAdiabatic processMolecular BiologyOpen shellMolecular Physics
researchProduct

TASCAを用いたCn, Nh, Fl化学実験のためのHg, Tl, PbのSiO2及びAu表面に対するオンライン化学吸着研究

2018

Online gas-solid adsorption studies with single atom quantities of Hg, Tl, and Pb on SiO$_{2}$ and Au surfaces were carried out using short-lived radioisotopes with half-lives in the range of 4-49 s. This is a model study to measure adsorption enthalpies of superheavy elements Cn, Nh, and Fl. The short-lived isotopes were produced and separated by the gas-filled recoil separator TASCA at GSI. The products were stopped in He gas, and flushed into gas chromatography columns made of Si detectors whose surfaces were covered by SiO$_{2}$ or Au. The short-lived Tl and Pb were successfully measured by the Si detectors with the SiO$_{2}$ surface at room temperature. On the other hand, the Hg did no…

Analytical chemistrychemistry.chemical_elementElectronic structure010402 general chemistry01 natural sciencesadsorption studiethermochromatographyHomologs of superheavy elementRELATIVISTIC PERIODIC DFTMetalGSIAdsorptionCHEMISTRY0103 physical sciencesisothermal chromatographyPhysical and Theoretical ChemistrySUPERHEAVY ELEMENTS010306 general physicsCoperniciumChemistryQUARTZ SURFACE0104 chemical sciencesgas phase chromatography of single atomHEAVIEST ELEMENTSFleroviumELECTRONIC-STRUCTUREvisual_artYield (chemistry)METALvisual_art.visual_art_mediumGas chromatographyRelativistic quantum chemistryphysical preseparationSYSTEMRadiochimica acta
researchProduct

Dynamics of thick discs around Schwarzschild-de Sitter black holes

2003

We consider the effects of a cosmological constant on the dynamics of constant angular momentum discs orbiting Schwarzschild-de Sitter black holes. The motivation behind this study is to investigate whether the presence of a radial force contrasting the black hole's gravitational attraction can influence the occurrence of the runaway instability, a robust feature of the dynamics of constant angular momentum tori in Schwarzschild and Kerr spacetimes. In addition to the inner cusp near the black hole horizon through which matter can accrete onto the black hole, in fact, a positive cosmological constant introduces also an outer cusp through which matter can leave the torus without accreting on…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaAccretion discs ; Black holes ; Relativity ; Hydrodynamics ; Cosmological constantFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)UNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsInstabilityGeneral Relativity and Quantum CosmologyRelativityGravitationGeneral Relativity and Quantum CosmologyDe Sitter universeCosmological constantPhysicsBlack holesHorizonAstrophysics (astro-ph)Astronomy and AstrophysicsTorus:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Classical mechanicsSpace and Planetary ScienceHydrodynamicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaSchwarzschild radiusAccretion discs:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Relativistic simulations of rotational core collapse : I. Methods, initial models, and code tests

2002

We describe an axisymmetric general relativistic code for rotational core collapse. The code evolves the coupled system of metric and fluid equations using the ADM 3+1 formalism and a conformally flat metric approximation of the Einstein equations. The relativistic hydrodynamics equations are formulated as a first-order flux-conservative hyperbolic system and are integrated using high-resolution shock-capturing schemes based on Riemann solvers. We assess the quality of the conformally flat metric approximation for relativistic core collapse and present a comprehensive set of tests which the code successfully passed. The tests include relativistic shock tubes, the preservation of the rotatio…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsNumerical methodAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAGeneral Relativity and Quantum CosmologyGravitational wavesGravitationRelativitysymbols.namesakeWaveformPhysicsAstrophysics (astro-ph)Astronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Hyperbolic systemsNeutron starRiemann hypothesisClassical mechanicsSpace and Planetary ScienceGravitational waves ; Hydrodynamics ; Numerical method ; RelativitysymbolsHydrodynamicsFluid equationUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Ab initio quasi-relativistic calculations on angular momentum and magnetic couplings of molecular electronic states.

2002

Abstract We formulate an ab initio method of quasirelativistic calculations on angular momentum and magnetic transition matrix elements between adiabatic electronic states of molecules. Our approach is based on the construction of a state-selective effective Hamiltonian and transition density matrices by means of the multireference many-body perturbation theory. Pilot applications to the evaluation of B 0 + u → B ″1 u predissociation matrix elements in I 2 and interactions in the B 0 + u ∼ B 1 u complex of Te 2 are reported.

Angular momentumChemistryAb initioGeneral Physics and AstronomyElectronic structureDiatomic moleculesymbols.namesakeMatrix (mathematics)Ab initio quantum chemistry methodssymbolsPhysical and Theoretical ChemistryAtomic physicsHamiltonian (quantum mechanics)Adiabatic process
researchProduct

Quantum state engineering using one-dimensional discrete-time quantum walks

2017

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …

Angular momentumComputer scienceQuantum dynamicsQuantum technologiesFOS: Physical sciencesQuantum simulator02 engineering and technologyTopologySpace (mathematics)01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Open quantum systemQuantum statequantum informationQuantum mechanics0103 physical sciencesExperimental platformquantum walksQuantum walk010306 general physicsPhysicsQuantum networkQuantum PhysicsHigh-dimensional systemsQuantum state preparationbusiness.industryOrbital angular momentumQuantum-state engineeringArbitrary superpositionOne-way quantum computer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsArbitrary quantum stateQuantum technologyDiscrete time and continuous timeLine (geometry)PhotonicsQuantum Physics (quant-ph)0210 nano-technologybusiness
researchProduct

Wavelet analysis and HHG in nanorings: their applica-tions in logic gates and memory mass devices

2015

We study the application of one nanoring driven by a laser field in different states of polarization in logic circuits. In particular we show that assigning Boolean values to different states of the incident laser field and to the emitted signals, we can create logic gates such as OR, XOR and AND. We also show the possibility of making logic circuits such as half-adder and full-adder using one and two nanorings respectively. Using two nanorings we made the Toffoli gate. Finally we use the final angular momentum acquired by the electron to store information and hence show the possibility of using an array of nanorings as a mass memory device.

Angular momentumFOS: Physical sciencesToffoli gate02 engineering and technologyElectronTopology01 natural scienceslaw.inventionWaveletlaw0103 physical sciencesGeneral Materials Science010306 general physicsPhysicsQuantum Physics021001 nanoscience & nanotechnologyPolarization (waves)LaserLogic gateLogic gate quantum information nanoring quantum ring laser interaction wavelet high harmonic generationMaterials Science (all)0210 nano-technologyQuantum Physics (quant-ph)NanoringPhysics - OpticsHardware_LOGICDESIGNOptics (physics.optics)
researchProduct

Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron

2018

We analyze the multipole excitation of atoms with twisted light, i.e., by a vortex light field that carries orbital angular momentum. A single trapped $^{40}$Ca$^+$ ion serves as a localized and positioned probe of the exciting field. We drive the $S_{1/2} \to D_{5/2}$ transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Gauss-Laguerre mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a…

Angular momentumField (physics)Atomic Physics (physics.atom-ph)Ciencias FísicasGeneral Physics and AstronomyFOS: Physical sciencesOPTICAL ANGULAR MOMENTUM01 natural sciencesOPTICAL VORTICESPhysics - Atomic PhysicsRABI OSCILLATIONS010309 optics//purl.org/becyt/ford/1 [https]0103 physical sciences010306 general physicsION TRAPSÓpticaPhysicsQuantum Physics//purl.org/becyt/ford/1.3 [https]VortexBessel beamQUANTUM SELECTION RULESAtomic physicsMultipole expansionQuantum Physics (quant-ph)Optical vortexCIENCIAS NATURALES Y EXACTASLight fieldExcitationPhysics - OpticsOptics (physics.optics)
researchProduct

Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope

2020

An experimental test at the intersection of quantum physics and general relativity is proposed: measurement of relativistic frame dragging and geodetic precession using intrinsic spin of electrons. The behavior of intrinsic spin in spacetime dragged and warped by a massive rotating body is an experimentally open question, hence the results of such a measurement could have important theoretical consequences. Such a measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth. Under conditions where the rotational angular momentum of a ferromagnet is sufficiently small, a ferromagnet's angular momentum is dominated by atomic electron spins and is predicted to e…

Angular momentumGeneral relativityFOS: Physical sciencesElectronFrame-draggingGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologylaw.inventionPhysics::Geophysicslaw0103 physical sciencesddc:530010306 general physicsSpin (physics)Geodetic effectPhysicsQuantum Physics010308 nuclear & particles physicsGyroscopeQuantum electrodynamicsPhysics::Space PhysicsPrecessionCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)
researchProduct

The Ã 1Au state and the T2 potential surface of acetylene: Implications for triplet perturbations in the fluorescence spectra of the à state

1996

The cis–trans isomerization reaction on the T2 surface of acetylene and the lowest excited singlet state of acetylene, A 1Au, are investigated by ab initio electronic structure theory. We report optimized geometries, dipole moments, and harmonic vibrational frequencies of stationary points and adiabatic energy differences between them using basis sets as large as triple‐ζ plus double polarization with higher angular momentum functions, TZ(2df,2pd), and theoretical methods up to coupled‐cluster singles and doubles with a perturbative triples correction [CCSD(T)] and the equation‐of‐motion coupled‐cluster method (EOM‐CCSD). Our theoretical predictions should aid the interpretation of observat…

Angular momentumZeeman effectChemistryAb initioGeneral Physics and AstronomyElectronic structureQuantum chemistryPotential energyDipolesymbols.namesakechemistry.chemical_compoundAcetylenePhysics::Atomic and Molecular ClusterssymbolsPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsThe Journal of Chemical Physics
researchProduct